Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
J Med Chem ; 66(17): 11701-11717, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37596939

ABSTRACT

Remdesivir 1 is an phosphoramidate prodrug that releases the monophosphate of nucleoside GS-441524 (2) into lung cells, thereby forming the bioactive triphosphate 2-NTP. 2-NTP, an analog of ATP, inhibits the SARS-CoV-2 RNA-dependent RNA polymerase replication and transcription of viral RNA. Strong clinical results for 1 have prompted interest in oral approaches to generate 2-NTP. Here, we describe the discovery of a 5'-isobutyryl ester prodrug of 2 (GS-5245, Obeldesivir, 3) that has low cellular cytotoxicity and 3-7-fold improved oral delivery of 2 in monkeys. Prodrug 3 is cleaved presystemically to provide high systemic exposures of 2 that overcome its less efficient metabolism to 2-NTP, leading to strong SARS-CoV-2 antiviral efficacy in an African green monkey infection model. Exposure-based SARS-CoV-2 efficacy relationships resulted in an estimated clinical dose of 350-400 mg twice daily. Importantly, all SARS-CoV-2 variants remain susceptible to 2, which supports development of 3 as a promising COVID-19 treatment.


Subject(s)
COVID-19 , Prodrugs , Chlorocebus aethiops , Humans , Animals , SARS-CoV-2 , COVID-19 Drug Treatment , Nucleosides , Prodrugs/pharmacology , Prodrugs/therapeutic use , RNA, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Furans
2.
bioRxiv ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37425890

ABSTRACT

Despite the wide availability of several safe and effective vaccines that can prevent severe COVID-19 disease, the emergence of SARS-CoV-2 variants of concern (VOC) that can partially evade vaccine immunity remains a global health concern. In addition, the emergence of highly mutated and neutralization-resistant SARS-CoV-2 VOCs such as BA.1 and BA.5 that can partially or fully evade (1) many therapeutic monoclonal antibodies in clinical use underlines the need for additional effective treatment strategies. Here, we characterize the antiviral activity of GS-5245, Obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved RNA-dependent viral RNA polymerase (RdRp). Importantly, we show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-related Bat-CoV RsSHC014, Middle East Respiratory Syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant in vitro and highly effective as antiviral therapy in mouse models of SARS-CoV, SARS-CoV-2 (WA/1), MERS-CoV and Bat-CoV RsSHC014 pathogenesis. In all these models of divergent coronaviruses, we observed protection and/or significant reduction of disease metrics such as weight loss, lung viral replication, acute lung injury, and degradation in pulmonary function in GS-5245-treated mice compared to vehicle controls. Finally, we demonstrate that GS-5245 in combination with the main protease (Mpro) inhibitor nirmatrelvir had increased efficacy in vivo against SARS-CoV-2 compared to each single agent. Altogether, our data supports the continuing clinical evaluation of GS-5245 in humans infected with COVID-19, including as part of a combination antiviral therapy, especially in populations with the most urgent need for more efficacious and durable interventions.

3.
Antivir Ther ; 27(2): 13596535221082773, 2022 04.
Article in English | MEDLINE | ID: mdl-35499114

ABSTRACT

If a planned path reaches a dead-end, one can simply stop. Or one can turn around, walk back to the last intersection and take another path, or one can consider taking few paths in parallel. The last scenario is reflective of the journey of remdesivir, the first antiviral for the treatment of COVID-19, that was approved by FDA less than 10 months after the isolation of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. As of January 2022, 10 million COVID-19 patients have been treated with remdesivir worldwide, but the journey of this molecule started more than a decade earlier with the search for a cure of hepatitis C virus. The development path of remdesivir before the emergence of COVID-19 represents a valuable example of a preemptive pandemic preparedness, but the pursuit of this path would not have been possible without sustaining support of John C. Martin, whom we will sorely miss for his piercing vision, uncompromising leadership, and genuine compassion for patients suffering around the world.


Subject(s)
COVID-19 Drug Treatment , Hepacivirus , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Humans , Pandemics , SARS-CoV-2
4.
Sci Transl Med ; 14(643): eabm3410, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35315683

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic remains uncontrolled despite the rapid rollout of safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. In addition, the emergence of SARS-CoV-2 variants of concern, with their potential to escape neutralization by therapeutic monoclonal antibodies, emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parent nucleoside of remdesivir, which targets the highly conserved virus RNA-dependent RNA polymerase. GS-621763 exhibited antiviral activity against SARS-CoV-2 in lung cell lines and two different human primary lung cell culture systems. GS-621763 was also potently antiviral against a genetically unrelated emerging coronavirus, Middle East respiratory syndrome CoV (MERS-CoV). The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 administration reduced viral load and lung pathology; treatment also improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog antiviral that has recently received EUA approval, proved both drugs to be similarly efficacious in mice. These data support the exploration of GS-441524 oral prodrugs for the treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Infections , Prodrugs , Adenosine/analogs & derivatives , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Humans , Mice , Nucleosides , Parents , Prodrugs/pharmacology , Prodrugs/therapeutic use , SARS-CoV-2
5.
ACS Med Chem Lett ; 13(3): 338-347, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35291757

ABSTRACT

Remdesivir (GS-5734) is a monophenol, 2-ethylbutylalanine phosphoramidate prodrug of a 1'-cyano-4-aza-7,9-dideazaadenosine C-nucleoside (GS-441524) that is FDA approved for the treatment of hospitalized patients with COVID-19. The prodrug, initially invented for respiratory syncytial virus, was later found to have activity toward emerging RNA viruses, including Ebola and coronaviruses. Remdesivir is among the first examples of a phosphoramidate prodrug aimed at delivering a nucleoside monophosphate into lung cells to efficiently generate the nucleoside triphosphate inhibitor of viral RNA polymerases. With remdesivir as the central case study, the present work describes the antiviral potency and in vitro metabolism evidence for lung cell activation of phosphoramidates, together with their in vivo pharmacokinetics, lung distribution, and antiviral efficacy toward respiratory viruses. The lung delivery of nucleoside monophosphate analogs using prodrugs warrants further investigation toward the development of novel respiratory antivirals.

6.
Antiviral Res ; 198: 105246, 2022 02.
Article in English | MEDLINE | ID: mdl-35032523

ABSTRACT

The utility of remdesivir treatment in COVID-19 patients is currently limited by the necessity to administer this antiviral intravenously, which has generally limited its use to hospitalized patients. Here, we tested a novel, subcutaneous formulation of remdesivir in the rhesus macaque model of SARS-CoV-2 infection that was previously used to establish the efficacy of remdesivir against this virus in vivo. Compared to vehicle-treated animals, macaques treated with subcutaneous remdesivir from 12 h through 6 days post inoculation showed reduced signs of respiratory disease, a reduction of virus replication in the lower respiratory tract, and an absence of interstitial pneumonia. Thus, early subcutaneous administration of remdesivir can protect from lower respiratory tract disease caused by SARS-CoV-2.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Lung Diseases, Interstitial/prevention & control , SARS-CoV-2/drug effects , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/therapeutic use , Administration, Cutaneous , Alanine/administration & dosage , Alanine/pharmacokinetics , Alanine/therapeutic use , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Disease Models, Animal , Female , Lung/pathology , Lung/virology , Macaca mulatta , Male , Viral Load/drug effects , Virus Replication/drug effects
7.
Sci Transl Med ; 14(633): eabl8282, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-34968150

ABSTRACT

Remdesivir (RDV) is a nucleotide analog prodrug with demonstrated clinical benefit in patients with coronavirus disease 2019 (COVID-19). In October 2020, the US FDA approved intravenous (IV) RDV as the first treatment for hospitalized COVID-19 patients. Furthermore, RDV has been approved or authorized for emergency use in more than 50 countries. To make RDV more convenient for non-hospitalized patients earlier in disease, alternative routes of administration are being evaluated. Here, we investigated the pharmacokinetics and efficacy of RDV administered by head dome inhalation in African green monkeys (AGM). Relative to an IV administration of RDV at 10 mg/kg, an approximately 20-fold lower dose administered by inhalation produced comparable concentrations of the pharmacologically active triphosphate in lower respiratory tract tissues. Distribution of the active triphosphate into the upper respiratory tract was also observed following inhaled RDV exposure. Inhalation RDV dosing resulted in lower systemic exposures to RDV and its metabolites as compared with IV RDV dosing. An efficacy study with repeated dosing of inhaled RDV in an AGM model of SARS-CoV-2 infection demonstrated reductions in viral replication in bronchoalveolar lavage fluid and respiratory tract tissues compared with placebo. Efficacy was observed with inhaled RDV administered once daily at a pulmonary deposited dose of 0.35 mg/kg beginning approximately 8 hours post-infection. Moreover, the efficacy of inhaled RDV was similar to that of IV RDV administered once at 10 mg/kg followed by 5 mg/kg daily in the same study. Together, these findings support further clinical development of inhalation RDV.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacokinetics , Chlorocebus aethiops , Humans , Primates , SARS-CoV-2 , Viral Load
8.
Nat Commun ; 12(1): 6415, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34741049

ABSTRACT

Remdesivir is an antiviral approved for COVID-19 treatment, but its wider use is limited by intravenous delivery. An orally bioavailable remdesivir analog may boost therapeutic benefit by facilitating early administration to non-hospitalized patients. This study characterizes the anti-SARS-CoV-2 efficacy of GS-621763, an oral prodrug of remdesivir parent nucleoside GS-441524. Both GS-621763 and GS-441524 inhibit SARS-CoV-2, including variants of concern (VOC) in cell culture and human airway epithelium organoids. Oral GS-621763 is efficiently converted to plasma metabolite GS-441524, and in lungs to the triphosphate metabolite identical to that generated by remdesivir, demonstrating a consistent mechanism of activity. Twice-daily oral administration of 10 mg/kg GS-621763 reduces SARS-CoV-2 burden to near-undetectable levels in ferrets. When dosed therapeutically against VOC P.1 gamma γ, oral GS-621763 blocks virus replication and prevents transmission to untreated contact animals. These results demonstrate therapeutic efficacy of a much-needed orally bioavailable analog of remdesivir in a relevant animal model of SARS-CoV-2 infection.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Prodrugs/pharmacology , SARS-CoV-2/drug effects , Adenosine/pharmacology , Animals , COVID-19/metabolism , COVID-19/virology , Cell Line , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Female , Ferrets , Humans , SARS-CoV-2/isolation & purification
9.
bioRxiv ; 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34545367

ABSTRACT

The COVID-19 pandemic remains uncontrolled despite the rapid rollout of safe and effective SARS-CoV-2 vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. Additionally, the emergence of SARS-CoV-2 variants of concern with their potential to escape therapeutic monoclonal antibodies emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parental nucleoside of remdesivir, which targets the highly conserved RNA-dependent RNA polymerase. GS-621763 exhibited significant antiviral activity in lung cell lines and two different human primary lung cell culture systems. The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 significantly reduced viral load, lung pathology, and improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog antiviral currently in human clinical trial, proved both drugs to be similarly efficacious. These data demonstrate that therapy with oral prodrugs of remdesivir can significantly improve outcomes in SARS-CoV-2 infected mice. Thus, GS-621763 supports the exploration of GS-441524 oral prodrugs for the treatment of COVID-19 in humans.

10.
J Med Chem ; 64(8): 5001-5017, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33835812

ABSTRACT

A discovery program targeting respiratory syncytial virus (RSV) identified C-nucleoside 4 (RSV A2 EC50 = 530 nM) as a phenotypic screening lead targeting the RSV RNA-dependent RNA polymerase (RdRp). Prodrug exploration resulted in the discovery of remdesivir (1, GS-5734) that is >30-fold more potent than 4 against RSV in HEp-2 and NHBE cells. Metabolism studies in vitro confirmed the rapid formation of the active triphosphate metabolite, 1-NTP, and in vivo studies in cynomolgus and African Green monkeys demonstrated a >10-fold higher lung tissue concentration of 1-NTP following molar normalized IV dosing of 1 compared to that of 4. A once daily 10 mg/kg IV administration of 1 in an African Green monkey RSV model demonstrated a >2-log10 reduction in the peak lung viral load. These early data following the discovery of 1 supported its potential as a novel treatment for RSV prior to its development for Ebola and approval for COVID-19 treatment.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Prodrugs/pharmacology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Caco-2 Cells , Cells, Cultured , Chlorocebus aethiops , Disease Models, Animal , Dogs , Drug Evaluation, Preclinical/methods , Epithelial Cells/virology , Humans , Macaca fascicularis , Male , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Rats, Sprague-Dawley , Respiratory Syncytial Virus Infections/virology , Structure-Activity Relationship , Tissue Distribution , Tubercidin/analogs & derivatives , Tubercidin/chemistry , Viral Load
11.
Antivir Ther ; 25(3): 171-180, 2020.
Article in English | MEDLINE | ID: mdl-32667286

ABSTRACT

BACKGROUND: Selgantolimod is a novel oral, selective Toll-like receptor 8 (TLR8) agonist in development for the treatment of chronic hepatitis B (CHB). TLR8 is an endosomal innate immune receptor and a target for treatment of viral infections. This first-in-human study investigated the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of selgantolimod in healthy volunteers. METHODS: Of 71 subjects enrolled, 59 received a single dose of selgantolimod (0.5, 1.5, 3 or 5 mg) or placebo, and 12 were evaluated for food effect. Safety, PK and PD activity by induction of cytokines, chemokines and acute phase proteins were assessed. PK/PD analyses were conducted. RESULTS: Single doses of 0.5-5 mg were generally safe. No serious adverse events (AEs) or AEs leading to discontinuation were reported, and most were Grade 1 in severity. Selgantolimod displayed rapid absorption and dose-proportional PK and PD activity. Food had minimal effect on PK but resulted in diminished PD activity. In PK/PD analyses, near-saturation of induction for most evaluated biomarkers occurred at the 5-mg dose. CONCLUSIONS: Single doses of up to 5 mg selgantolimod were safe and induced dose-dependent PD responses. These data support evaluation of selgantolimod in combination with other agents in future clinical studies of CHB. Australian New Zealand Clinical Trials Registration: ACTRN12616001646437.


Subject(s)
Antiviral Agents/pharmacology , Hexanols/pharmacology , Pyrimidines/pharmacology , Toll-Like Receptor 8/agonists , Administration, Oral , Adult , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Antiviral Agents/pharmacokinetics , Chemokines/blood , Dose-Response Relationship, Drug , Female , Hepatitis B, Chronic/drug therapy , Hexanols/administration & dosage , Hexanols/adverse effects , Hexanols/pharmacokinetics , Humans , Interleukin 1 Receptor Antagonist Protein/blood , Interleukin-12/blood , Male , Pyrimidines/administration & dosage , Pyrimidines/adverse effects , Pyrimidines/pharmacokinetics , Young Adult
12.
J Med Chem ; 63(18): 10188-10203, 2020 09 24.
Article in English | MEDLINE | ID: mdl-32407112

ABSTRACT

Toll-like receptor 8 (TLR8) recognizes pathogen-derived single-stranded RNA fragments to trigger innate and adaptive immune responses. Chronic hepatitis B (CHB) is associated with a dysfunctional immune response, and therefore a selective TLR8 agonist may be an effective treatment option. Structure-based optimization of a dual TLR7/8 agonist led to the identification of the selective TLR8 clinical candidate (R)-2-((2-amino-7-fluoropyrido[3,2-d]pyrimidin-4-yl)amino)-2-methylhexan-1-ol (GS-9688, (R)-7). Potent TLR8 agonism (IL-12p40 EC50 = 220 nM) and >100-fold TLR7 selectivity (IFN-α EC50 > 50 µM) was observed in human peripheral blood mononuclear cells (PBMCs). The TLR8-ectodomain:(R)-7 complex confirmed TLR8 binding and a direct ligand interaction with TLR8 residue Asp545. Oral (R)-7 had good absorption and high first pass clearance in preclinical species. A reduction in viral markers was observed in HBV-infected primary human hepatocytes treated with media from PBMCs stimulated with (R)-7, supporting the clinical development of (R)-7 for the treatment of CHB.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis B, Chronic/drug therapy , Hexanols/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , Toll-Like Receptor 8/agonists , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Crystallography, X-Ray , Dogs , Drug Discovery , Hepatitis B virus/drug effects , Hexanols/administration & dosage , Hexanols/chemical synthesis , Hexanols/metabolism , Humans , Macaca fascicularis , Molecular Structure , Protein Domains , Pyridines/administration & dosage , Pyridines/chemical synthesis , Pyridines/metabolism , Pyrimidines/administration & dosage , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Rats , Structure-Activity Relationship , Toll-Like Receptor 8/metabolism
13.
J Med Chem ; 61(21): 9473-9499, 2018 11 08.
Article in English | MEDLINE | ID: mdl-30074795

ABSTRACT

Cyclophilins are a family of peptidyl-prolyl isomerases that are implicated in a wide range of diseases including hepatitis C. Our aim was to discover through total synthesis an orally bioavailable, non-immunosuppressive cyclophilin (Cyp) inhibitor with potent anti-hepatitis C virus (HCV) activity that could serve as part of an all oral antiviral combination therapy. An initial lead 2 derived from the sanglifehrin A macrocycle was optimized using structure based design to produce a potent and orally bioavailable inhibitor 3. The macrocycle ring size was reduced by one atom, and an internal hydrogen bond drove improved permeability and drug-like properties. 3 demonstrates potent Cyp inhibition ( Kd = 5 nM), potent anti-HCV 2a activity (EC50 = 98 nM), and high oral bioavailability in rat (100%) and dog (55%). The synthetic accessibility and properties of 3 support its potential as an anti-HCV agent and for interrogating the role of Cyp inhibition in a variety of diseases.


Subject(s)
Cyclophilins/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/pharmacokinetics , Administration, Oral , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Biological Availability , Cell Line , Cyclophilins/chemistry , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Hepacivirus/drug effects , Lactones/administration & dosage , Lactones/chemistry , Lactones/pharmacokinetics , Lactones/pharmacology , Models, Molecular , Protein Conformation , Spiro Compounds/administration & dosage , Spiro Compounds/chemistry , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology
14.
mBio ; 9(2)2018 03 06.
Article in English | MEDLINE | ID: mdl-29511076

ABSTRACT

Emerging coronaviruses (CoVs) cause severe disease in humans, but no approved therapeutics are available. The CoV nsp14 exoribonuclease (ExoN) has complicated development of antiviral nucleosides due to its proofreading activity. We recently reported that the nucleoside analogue GS-5734 (remdesivir) potently inhibits human and zoonotic CoVs in vitro and in a severe acute respiratory syndrome coronavirus (SARS-CoV) mouse model. However, studies with GS-5734 have not reported resistance associated with GS-5734, nor do we understand the action of GS-5734 in wild-type (WT) proofreading CoVs. Here, we show that GS-5734 inhibits murine hepatitis virus (MHV) with similar 50% effective concentration values (EC50) as SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Passage of WT MHV in the presence of the GS-5734 parent nucleoside selected two mutations in the nsp12 polymerase at residues conserved across all CoVs that conferred up to 5.6-fold resistance to GS-5734, as determined by EC50 The resistant viruses were unable to compete with WT in direct coinfection passage in the absence of GS-5734. Introduction of the MHV resistance mutations into SARS-CoV resulted in the same in vitro resistance phenotype and attenuated SARS-CoV pathogenesis in a mouse model. Finally, we demonstrate that an MHV mutant lacking ExoN proofreading was significantly more sensitive to GS-5734. Combined, the results indicate that GS-5734 interferes with the nsp12 polymerase even in the setting of intact ExoN proofreading activity and that resistance can be overcome with increased, nontoxic concentrations of GS-5734, further supporting the development of GS-5734 as a broad-spectrum therapeutic to protect against contemporary and emerging CoVs.IMPORTANCE Coronaviruses (CoVs) cause severe human infections, but there are no approved antivirals to treat these infections. Development of nucleoside-based therapeutics for CoV infections has been hampered by the presence of a proofreading exoribonuclease. Here, we expand the known efficacy of the nucleotide prodrug remdesivir (GS-5734) to include a group ß-2a CoV. Further, GS-5734 potently inhibits CoVs with intact proofreading. Following selection with the GS-5734 parent nucleoside, 2 amino acid substitutions in the nsp12 polymerase at residues that are identical across CoVs provide low-level resistance to GS-5734. The resistance mutations decrease viral fitness of MHV in vitro and attenuate pathogenesis in a SARS-CoV animal model of infection. Together, these studies define the target of GS-5734 activity and demonstrate that resistance is difficult to select, only partial, and impairs fitness and virulence of MHV and SARS-CoV, supporting further development of GS-5734 as a potential effective pan-CoV antiviral.


Subject(s)
Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Coronavirus/drug effects , Coronavirus/enzymology , Exoribonucleases/metabolism , Ribonucleotides/pharmacology , Severe acute respiratory syndrome-related coronavirus/drug effects , Adenosine Monophosphate/analogs & derivatives , Alanine/pharmacology , Animals , Exoribonucleases/chemistry , Exoribonucleases/genetics , Mice , Mutation/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Virus Replication/drug effects , Virus Replication/genetics
15.
Sci Transl Med ; 9(396)2017 06 28.
Article in English | MEDLINE | ID: mdl-28659436

ABSTRACT

Emerging viral infections are difficult to control because heterogeneous members periodically cycle in and out of humans and zoonotic hosts, complicating the development of specific antiviral therapies and vaccines. Coronaviruses (CoVs) have a proclivity to spread rapidly into new host species causing severe disease. Severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) successively emerged, causing severe epidemic respiratory disease in immunologically naïve human populations throughout the globe. Broad-spectrum therapies capable of inhibiting CoV infections would address an immediate unmet medical need and could be invaluable in the treatment of emerging and endemic CoV infections. We show that a nucleotide prodrug, GS-5734, currently in clinical development for treatment of Ebola virus disease, can inhibit SARS-CoV and MERS-CoV replication in multiple in vitro systems, including primary human airway epithelial cell cultures with submicromolar IC50 values. GS-5734 was also effective against bat CoVs, prepandemic bat CoVs, and circulating contemporary human CoV in primary human lung cells, thus demonstrating broad-spectrum anti-CoV activity. In a mouse model of SARS-CoV pathogenesis, prophylactic and early therapeutic administration of GS-5734 significantly reduced lung viral load and improved clinical signs of disease as well as respiratory function. These data provide substantive evidence that GS-5734 may prove effective against endemic MERS-CoV in the Middle East, circulating human CoV, and, possibly most importantly, emerging CoV of the future.


Subject(s)
Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Coronavirus/drug effects , Epidemics , Ribonucleotides/pharmacology , Zoonoses/epidemiology , Zoonoses/virology , Adenosine Monophosphate/analogs & derivatives , Alanine/metabolism , Alanine/pharmacokinetics , Alanine/pharmacology , Alanine/toxicity , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacokinetics , Antiviral Agents/toxicity , Callithrix , Cell Line , Epithelial Cells/virology , Humans , Lung/pathology , Mice , Ribonucleotides/metabolism , Ribonucleotides/pharmacokinetics , Ribonucleotides/toxicity , Virus Replication/drug effects , Zoonoses/prevention & control
16.
Sci Rep ; 7: 43395, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28262699

ABSTRACT

GS-5734 is a monophosphate prodrug of an adenosine nucleoside analog that showed therapeutic efficacy in a non-human primate model of Ebola virus infection. It has been administered under compassionate use to two Ebola patients, both of whom survived, and is currently in Phase 2 clinical development for treatment of Ebola virus disease. Here we report the antiviral activities of GS-5734 and the parent nucleoside analog across multiple virus families, providing evidence to support new indications for this compound against human viruses of significant public health concern.


Subject(s)
Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Ebolavirus/drug effects , Marburgvirus/drug effects , Paramyxoviridae/drug effects , Pneumovirinae/drug effects , Prodrugs/pharmacology , Ribonucleotides/pharmacology , A549 Cells , Adenosine Monophosphate/analogs & derivatives , Alanine/chemical synthesis , Alanine/metabolism , Alanine/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Cell Line, Tumor , Chlorocebus aethiops , Ebolavirus/enzymology , Ebolavirus/growth & development , Gene Expression , HEK293 Cells , HeLa Cells , Hepatocytes/drug effects , Hepatocytes/virology , Humans , Marburgvirus/enzymology , Marburgvirus/growth & development , Microbial Sensitivity Tests , Nucleosides/chemical synthesis , Nucleosides/metabolism , Nucleosides/pharmacology , Paramyxoviridae/enzymology , Paramyxoviridae/growth & development , Pneumovirinae/enzymology , Pneumovirinae/growth & development , Prodrugs/chemical synthesis , Prodrugs/metabolism , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Ribonucleotides/chemical synthesis , Ribonucleotides/metabolism , Vero Cells , Viral Proteins/antagonists & inhibitors , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
17.
J Med Chem ; 60(5): 1648-1661, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28124907

ABSTRACT

The recent Ebola virus (EBOV) outbreak in West Africa was the largest recorded in history with over 28,000 cases, resulting in >11,000 deaths including >500 healthcare workers. A focused screening and lead optimization effort identified 4b (GS-5734) with anti-EBOV EC50 = 86 nM in macrophages as the clinical candidate. Structure activity relationships established that the 1'-CN group and C-linked nucleobase were critical for optimal anti-EBOV potency and selectivity against host polymerases. A robust diastereoselective synthesis provided sufficient quantities of 4b to enable preclinical efficacy in a non-human-primate EBOV challenge model. Once-daily 10 mg/kg iv treatment on days 3-14 postinfection had a significant effect on viremia and mortality, resulting in 100% survival of infected treated animals [ Nature 2016 , 531 , 381 - 385 ]. A phase 2 study (PREVAIL IV) is currently enrolling and will evaluate the effect of 4b on viral shedding from sanctuary sites in EBOV survivors.


Subject(s)
Alanine/analogs & derivatives , Amides/chemistry , Hemorrhagic Fever, Ebola/drug therapy , Phosphoric Acids/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology , Ribonucleotides/chemistry , Virus Diseases/drug therapy , Adenosine Monophosphate/analogs & derivatives , Alanine/chemistry , Cell Line , Drug Discovery , Humans , Microbial Sensitivity Tests , Prodrugs/chemical synthesis , Structure-Activity Relationship
18.
J Med Chem ; 60(3): 1000-1017, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28075591

ABSTRACT

Cyclophilin inhibition has been a target for the treatment of hepatitis C and other diseases, but the generation of potent, drug-like molecules through chemical synthesis has been challenging. In this study, a set of macrocyclic cyclophilin inhibitors was synthesized based on the core structure of the natural product sanglifehrin A. Initial compound optimization identified the valine-m-tyrosine-piperazic acid tripeptide (Val-m-Tyr-Pip) in the sanglifehrin core, stereocenters at C14 and C15, and the hydroxyl group of the m-tyrosine (m-Tyr) residue as key contributors to compound potency. Replacing the C18-C21 diene unit of sanglifehrin with a styryl group led to potent compounds that displayed a novel binding mode in which the styrene moiety engaged in a π-stacking interaction with Arg55 of cyclophilin A (Cyp A), and the m-Tyr residue was displaced into solvent. This observation allowed further simplifications of the scaffold to generate new lead compounds in the search for orally bioavailable cyclophilin inhibitors.


Subject(s)
Cyclophilins/antagonists & inhibitors , Cells, Cultured , Chromatography, Liquid , Crystallography, X-Ray , Drug Discovery , Humans , Hydrogen Bonding , Lactones/chemistry , Lactones/pharmacology , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Structure-Activity Relationship , Surface Plasmon Resonance , Thermodynamics
19.
Nature ; 531(7594): 381-5, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26934220

ABSTRACT

The most recent Ebola virus outbreak in West Africa, which was unprecedented in the number of cases and fatalities, geographic distribution, and number of nations affected, highlights the need for safe, effective, and readily available antiviral agents for treatment and prevention of acute Ebola virus (EBOV) disease (EVD) or sequelae. No antiviral therapeutics have yet received regulatory approval or demonstrated clinical efficacy. Here we report the discovery of a novel small molecule GS-5734, a monophosphoramidate prodrug of an adenosine analogue, with antiviral activity against EBOV. GS-5734 exhibits antiviral activity against multiple variants of EBOV and other filoviruses in cell-based assays. The pharmacologically active nucleoside triphosphate (NTP) is efficiently formed in multiple human cell types incubated with GS-5734 in vitro, and the NTP acts as an alternative substrate and RNA-chain terminator in primer-extension assays using a surrogate respiratory syncytial virus RNA polymerase. Intravenous administration of GS-5734 to nonhuman primates resulted in persistent NTP levels in peripheral blood mononuclear cells (half-life, 14 h) and distribution to sanctuary sites for viral replication including testes, eyes, and brain. In a rhesus monkey model of EVD, once-daily intravenous administration of 10 mg kg(-1) GS-5734 for 12 days resulted in profound suppression of EBOV replication and protected 100% of EBOV-infected animals against lethal disease, ameliorating clinical disease signs and pathophysiological markers, even when treatments were initiated three days after virus exposure when systemic viral RNA was detected in two out of six treated animals. These results show the first substantive post-exposure protection by a small-molecule antiviral compound against EBOV in nonhuman primates. The broad-spectrum antiviral activity of GS-5734 in vitro against other pathogenic RNA viruses, including filoviruses, arenaviruses, and coronaviruses, suggests the potential for wider medical use. GS-5734 is amenable to large-scale manufacturing, and clinical studies investigating the drug safety and pharmacokinetics are ongoing.


Subject(s)
Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , Hemorrhagic Fever, Ebola/drug therapy , Macaca mulatta/virology , Ribonucleotides/therapeutic use , Adenosine Monophosphate/analogs & derivatives , Alanine/pharmacokinetics , Alanine/pharmacology , Alanine/therapeutic use , Amino Acid Sequence , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Cell Line, Tumor , Ebolavirus/drug effects , Female , HeLa Cells , Hemorrhagic Fever, Ebola/prevention & control , Humans , Male , Molecular Sequence Data , Organ Specificity , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Prodrugs/therapeutic use , Ribonucleotides/pharmacokinetics , Ribonucleotides/pharmacology
20.
Antimicrob Agents Chemother ; 59(8): 4889-900, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26055364

ABSTRACT

Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and pneumonia in infants. Effective treatment for RSV infection is a significant unmet medical need. While new RSV therapeutics are now in development, there are very few animal models that mimic the pathogenesis of human RSV, making it difficult to evaluate new disease interventions. Experimental infection of Holstein calves with bovine RSV (bRSV) causes a severe respiratory infection that is similar to human RSV infection, providing a relevant model for testing novel therapeutic agents. In this model, viral load is readily detected in nasal secretions by quantitative real-time PCR (qRT-PCR), and cumulative symptom scoring together with histopathology evaluations of infected tissue allow for the assessment of disease severity. The bovine RSV model was used to evaluate the antiviral activity of an RSV fusion inhibitor, GS1, which blocks virus entry by inhibiting the fusion of the viral envelope with the host cell membrane. The efficacy of GS1, a close structural analog of GS-5806 that is being developed to treat RSV infection in humans was evaluated in two randomized, blind, placebo-controlled studies in bRSV-infected calves. Intravenous administration of GS1 at 4 mg/kg of body weight/day for 7 days starting 24 h or 72 h postinoculation provided clear therapeutic benefit by reducing the viral load, disease symptom score, respiration rate, and lung pathology associated with bRSV infection. These data support the use of the bovine RSV model for evaluation of experimental therapeutics for treatment of RSV.


Subject(s)
Antiviral Agents/pharmacology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Bovine/drug effects , Animals , Bronchiolitis/drug therapy , Bronchiolitis/virology , Cattle , Cattle Diseases/drug therapy , Cattle Diseases/pathology , Cattle Diseases/virology , Cell Line , Cell Membrane/pathology , Cell Membrane/virology , Double-Blind Method , Humans , Indazoles , Lung/pathology , Lung/virology , Male , Pyrazoles/pharmacology , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus, Human/drug effects , Sulfonamides/pharmacology , Viral Load/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...